رهیافتی نو برای حل عددی چند رده از معادلات دیفرانسیل و معادلات انتگرالی ماتریسی

thesis
abstract

در این رساله ابتدا با استفاده از چند جمله ای های برنولی و خواص آن ها ماتریس های عملیاتی مشتق، انتگرال و حاصلضرب چند جمله ای های برنولی ساخته می شوند و روش ماتریسی برنولی معرفی می گردد. سپس در اولین تلاش روش ماتریسی مذکور را برای حل عددی معادلات دیفرانسیل معمولی ماتریسی مرتبه اول به کار برده و کارایی این روش را نسبت به روش هم مکانی از طریق حل چند مثال عددی نشان می دهیم. همچنین حل عددی معادلات با مشتقات جزئی مرتبه اول و دوم ماتریسی با شرایط اولیه را در نظر گرفته و آنالیز همگرایی روش ماتریسی برنولی برای معادلات مذکور را بررسی خواهیم کرد. در انتهای این رساله نیز کاربرد روش مذکور را در حل عددی معادلات با مشتقات جزئی سهموی یک بعدی با شرایط مرزی غیرمحلی، معادلات با مشتقات جزئی سهموی دو بعدی با شرایط مرزی دیریخله، معادلات انتگرالی فردهلم یک بعدی و معادلات انتگرالی فردهلم دو بعدی شرح داده می شوند و در اینجا نیز کارایی روش جدید پیشنهاد شده نسبت به چند روش عددی دیگر از طریق حل مثال های عددی نشان داده خواهد شد.

similar resources

پیاده‌سازی سخت‌افزاری حل عددی معادلات دیفرانسیل روی F‌P‌G‌A

حل عددی معادلات دیفرانسیل با استفاده از بسترهای C‌P‌U و G‌P‌U مبتنی بر پیاده‌سازی نرم‌افزاری است. در سال‌های اخیر، راهکار جدیدی مبتنی بر پیاده‌سازی سخت‌افزاری معادلات با استفاده از بستر F‌P‌G‌A، به‌دلیل افزایش سرعت حل و کاهش توان مصرفی، مورد توجه جدی قرار گرفته است. در این پژوهش با حل چند مسئله‌ی نوعی، شامل سیستم جرم و فنر و معادله‌ی موج، روش پیاده‌سازی سخت‌افزاری برای حل معادلات دیفرانسیل بر ر...

full text

روش ماتریسی بسل برای حل عددی رده ای از معادلات دیفرانسیل-انتگرال خطی از مرتبه بالا

در این پایان نامه یک روش عددی موسوم به روش ماتریسی بسل برای تقریب زدن جواب معادلات دیفرانسیل-انتگرال ولترا و فردهولم-ولترا خطی از مرتبه بالا تحت شرایط مخلوط مورد بررسی قرار گرفته است. این روش با استفاده از چندجمله ای های بسل و روش هم محلی معادله دیفرانسیل-انتگرال را به یک معادله ماتریسی تبدیل می کند. معادله ماتریسی متناظر با یک دستگاه معادلات خطی با ضرایب مجهول بسل است. بعلاوه روش ماتریسی بسل...

15 صفحه اول

روش هاى چند گامی مستقل از مشتق برای حل عددی معادلات غیر خطی

در این مقاله٬ خانواده­ای از روش­های چند گامی کارا و مستقل از مشتق را برای حل عددی معادلات غیر­خطی بیان می­کنیم. این روش­های چند گامی مبتنی بر چند جمله ­ای درونیاب نیوتن و روش تجزیه آدومیان[1] بهبود یافته می­باشند. مرتبه همگرایی این روش­ها را محاسبه می­کنیم و با استفاده از چند مثال کارایی روش­های چند گامی مستقل از مشتق را  نشان می­دهیم.

full text

روش بدون شبکه برای حل عددی معادلات دیفرانسیل از مرتبه کسری

در این مقاله یک تکنیک کلی شناخته شده با عنوان روش بدون شبکه برای حل معادلات دیفرانسیل از مرتبه کسری درنظرگرفته شده است.جواب دقیق را با کمک روش مبتنی بر هم محلی توابع پایه شعاعی مورد تقریب قرار‏ ‎‏می‎دهیم.این تکنیک نقش مهمی که ایفا می کند معادله دیفرانسیل کسری را به یک دستگاه معادلات تقلیل می دهد.نتایج عددی بیانگر دقت وتوانایی این روش است.

full text

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023